Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
نویسندگان
چکیده
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, AMNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment. Keywords—Tumor tissue, antibody, magnetic nanoparticle, CTCs capturing.
منابع مشابه
Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملFacile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors.
We report the facile synthesis of arginine-glycine-aspartic acid (RGD) peptide-targeted iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for in vivo tumor magnetic resonance (MR) imaging. In this study, stable polyethyleneimine (PEI)-coated Fe3O4 NPs were first prepared by a mild reduction route. The formed aminated Fe3O4 NPs with PEI coating were sequentially conjugated with fl...
متن کاملBlock copolymer conjugated Au-coated Fe3O4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake
BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-amin...
متن کاملStudy of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application
Objective(s): This paper describes synthesizing of magnetic nanocomposite with co-precipitation method. Materials and Methods: Magnetic ZnxFe3-xO4 nanoparticles with 0-14% zinc doping (x=0, 0.025, 0.05, 0.075, 0.1 and 0.125) were successfully synthesized by co-precipitation method. The prepared zinc-doped Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron...
متن کاملEffect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts
Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017